Distinct retinohypothalamic innervation patterns predict the developmental emergence of species-typical circadian phase preference in nocturnal Norway rats and diurnal nile grass rats.
نویسندگان
چکیده
How does the brain develop differently to support nocturnality in some mammals, but diurnality in others? To answer this question, one might look to the suprachiasmatic nucleus (SCN), which is entrained by light via the retinohypothalamic tract (RHT). However, because the SCN is more active during the day in all mammals studied thus far, it alone cannot determine circadian phase preference. In adult Norway rats (Rattus norvegicus), which are nocturnal, the RHT also projects to the ventral subparaventricular zone (vSPVZ), an adjacent region that expresses an in-phase pattern of SCN-vSPVZ neuronal activity. In contrast, in adult Nile grass rats (Arvicanthis niloticus), which are diurnal, an anti-phase pattern of SCN-vSPVZ neuronal activity is expressed. We hypothesized that these species differences result in part from a weak or absent RHT-to-vSPVZ projection in grass rats. Here, using a developmental comparative approach, we assessed species differences in behavior, hypothalamic activity, and RHT anatomy. We report that a robust retina-to-vSPVZ projection develops in Norway rats around the end of the second postnatal week when nocturnal wakefulness and the in-phase pattern of neuronal activity emerge. In grass rats, however, such a projection does not develop and the emergence of the anti-phase pattern during the second postnatal week is accompanied by increased diurnal wakefulness. When considered within the context of previously published reports on RHT projections in a variety of species, the current findings suggest that how and when the retina connects to the hypothalamus differentially shapes brain and behavior to produce animals that occupy opposing temporal niches.
منابع مشابه
Night and day: distinct retinohypothalamic innervation patterns predict the development of nocturnality and diurnality in two murid rodent species
How does the brain develop differently to support nocturnality in some mammals, but diurnality in others? To answer this question, one might look to the suprachiasmatic nucleus (SCN), the pacemaker of the mammalian brain, which is required for all circadian biological and behavioral rhythms. Light arriving at the retina entrains the SCN to the daily light-dark cycle via the retinohypothalamic t...
متن کاملDim light at night increases immune function in Nile grass rats, a diurnal rodent.
With the widespread adoption of electrical lighting during the 20th century, human and nonhuman animals became exposed to high levels of light at night for the first time in evolutionary history. This divergence from the natural environment may have significant implications for certain ecological niches because of the important influence light exerts on the circadian system. For example, circad...
متن کاملComparison of area 17 cellular composition in laboratory and wild-caught rats including diurnal and nocturnal species.
In this study we examine the size of primary sensory areas in the neocortex and the cellular composition of area 17/V1 in three rodent groups: laboratory nocturnal Norway rats (Long-Evans; Rattus norvegicus), wild-caught nocturnal Norway rats (R. norvegicus), and laboratory diurnal Nile grass rats (Arvicanthis niloticus). Specifically, we used areal measures of myeloarchitecture of the primary ...
متن کاملCompartmentalized expression of light-induced clock genes in the suprachiasmatic nucleus of the diurnal grass rat (Arvicanthis niloticus).
Photic responses of the circadian system are mediated through light-induced clock gene expression in the suprachiasmatic nucleus (SCN). In nocturnal rodents, depending on the timing of light exposure, Per1 and Per2 gene expression shows distinct compartmentalized patterns that correspond to the behavioral responses. Whether the gene- and region-specific induction patterns are unique to nocturna...
متن کاملThe development of day-night differences in sleep and wakefulness in norway rats and the effect of bilateral enucleation.
The suprachiasmatic nucleus exhibits circadian rhythmicity in fetal and infant rats, but little is known about the consequences of this rhythmicity for infant behavior. Here, in experiment 1, the authors measured sleep and wakefulness in rats during the day and night in postnatal day (P)2, P8, P15, and P21 subjects. As early as P2, day-night differences in sleep-wake activity were detected. Noc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 520 14 شماره
صفحات -
تاریخ انتشار 2012